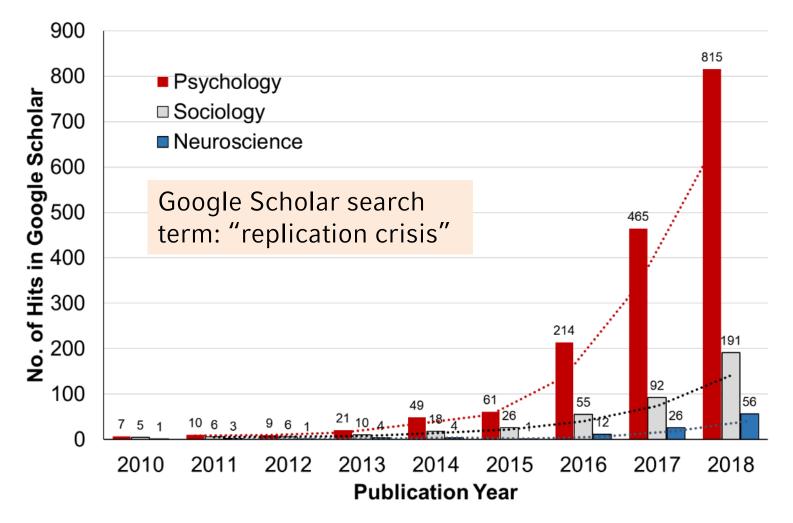


OPEN SCIENCE DAY, MANNHEIM, 20.10.2020

Analyzing and Optimizing Replicability in the Behavioral, Social, and Cognitive Sciences

Mario Gollwitzer

M. Gollwitzer: Analyzing and Optimizing Replicability


The Symptoms

- Many empirical findings are apparently non-replicable:
 - RP:P Project (OSC, 2015): 100 selected findings (social/cognitive psych); one "direct replication" per finding; replication success: 39%
 - ManyLabs 1 (Klein et al., 2014; Social Psychology): 13 selected findings (social/econ); 36 samples each; replication success: 77%
 - ManyLabs 2 (Klein et al., 2018; AMPPS): 28 selected findings (social/cog/econ); >60 samples each; replication success: 54%
 - ManyLabs 3 (Ebersole et al., 2016; JESP): 10 selected findings (social psych);
 20 samples each; replication success: 30%

... (more ManyLabs/RRR projects on individual effects; even more underway)

 Replication rates lower in life sciences and neurosciences, higher in behavioral economics (e.g., Begley & Ellis, 2012; Camerer et al., 2016; Camerer et al., 2018; Prinz, Schlange, & Asadullah, 2011)

THE SYMPTOMS

THE CURE (I): RAISING METHODS STANDARDS?

- Conduct sufficiently powered studies; justify sample size determination
- pre-register materials, design, hypotheses, and analyses
- correct for errors prior to submission (e.g., by using StatCheck; *PsychScience*)
- stricter significance levels (e.g., loannidis, 2018)
- report confidence interval estimates (e.g., *PSPB*)
- abandon NHST (and use Bayesian inference instead)
- ban the use of inferential statistics altogether (Trafimov & Marks, 2015; BASP; but see Fricker et al., 2019)

THE CURE (II): Open Science?

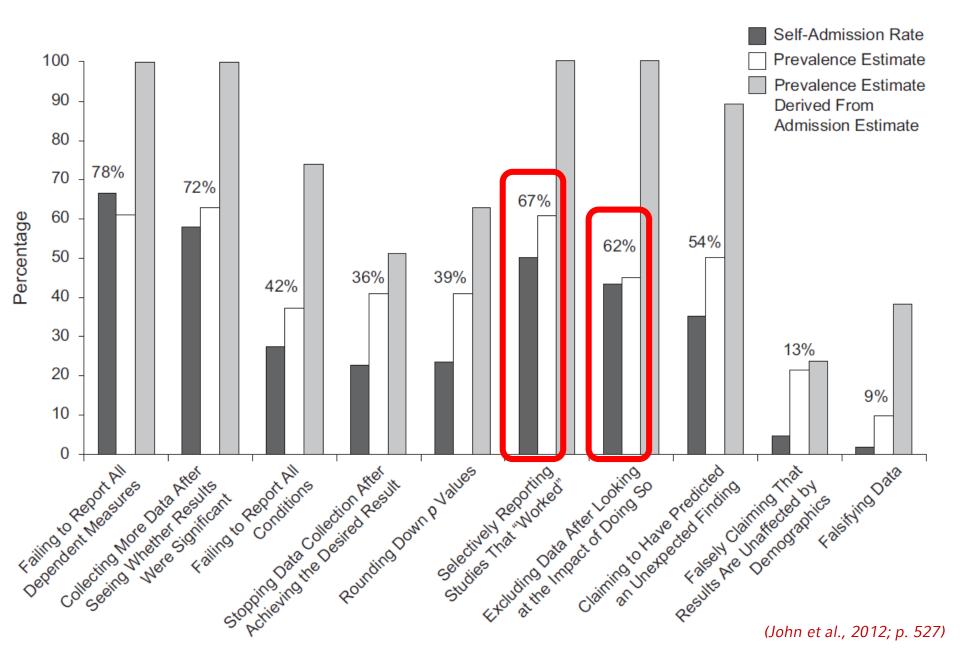
- **1. Compliance with reporting standards**: report and justify analytical decisions in detail; report all basic and supplementary analyses in addition to main analyses in the paper or in the SOM
- **2. Open materials**: provide all materials (e.g., stimuli, items) used in study; provide videos or protocols describing the experimental procedure
- **3. Preregistration** of hypotheses, operationalizations, analysis plan/code, sampling procedure, power analyses; clear distinction between confirmatory and exploratory analyses
- **4. Open data**: compliance with the FAIR principles (Wilkinson et al., 2016); compliance with data documentation standards ("meta-data")
- 5. Reproducible analysis code
- **6. Sharing research output** and assessment; publication of pre-prints or green/golden open access post-prints; post-publication peer review

THREE PERSPECTIVES

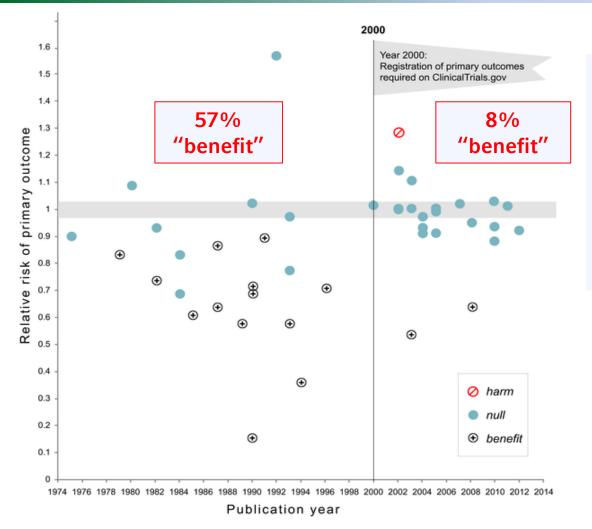
1. False-Positive Perspective

• "The literature is full of false positives that are obviously non-replicable."

2. Context-Dependency Perspective


• "Many effects are contingent on contextual conditions; if these are absent, the effect cannot be replicated."

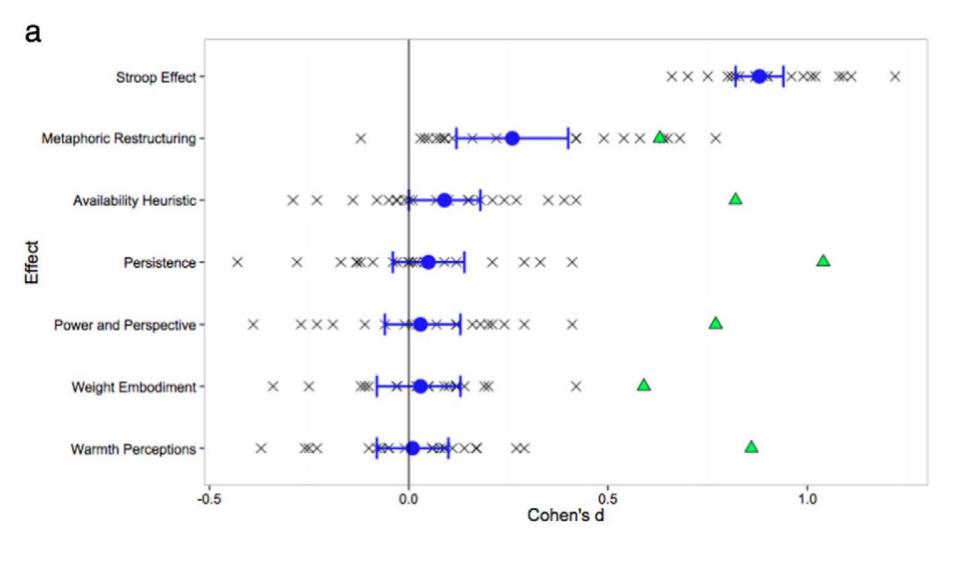
3. False-Negative Perspective


• *"The results from current replication projects underestimate true replicability rates."*

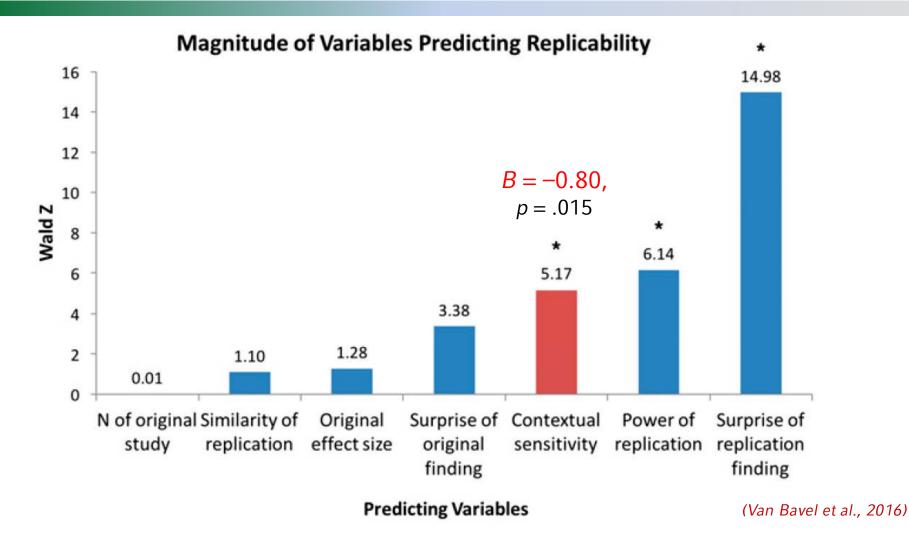
1. FALSE-POSITIVE PERSPECTIVE

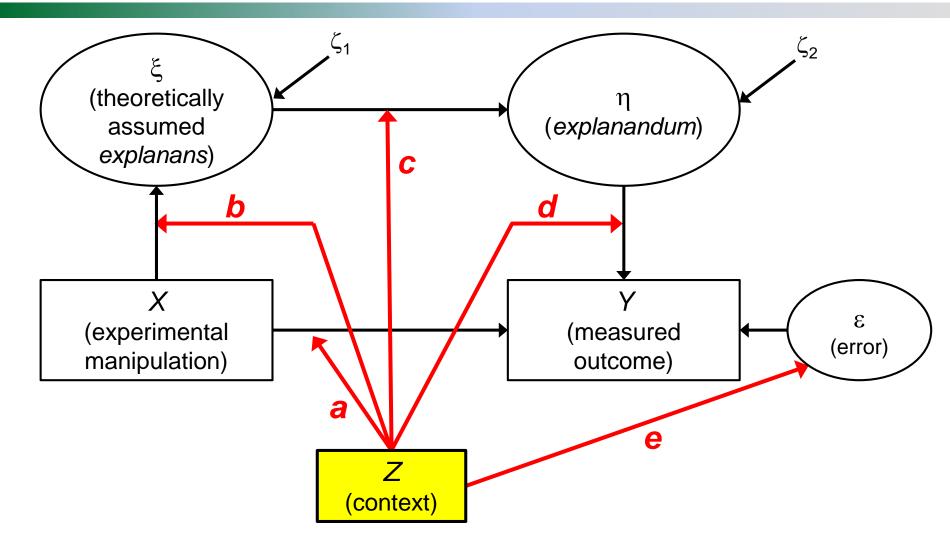
- What's the evidence?
 - Relatively high prevalence of "questionable research practices" (QRPs; Bakker et al., 2012; John et al., 2012; Simmons et al., 2011; Fiedler & Schwarz, 2015)
 - QRPs can inflate false-positive rates (e.g., Francis, 2012)
 - "Closed science" culture (Wicherts et al., 2011); many errors (incl. honest mistakes) remain undetected
 - Current incentive structure rewards quantity over quality; speed over accuracy; hypothesis-confirming over disconfirming findings (e.g., Ioannidis, 2012; Nosek et al., 2012; Smaldino & McElreath, 2016); publication bias

1. FALSE-POSITIVE PERSPECTIVE



After making preregistration mandatory for pharmacological trials (in 2000), the frequency of statistically significant effects has dramatically decreased...

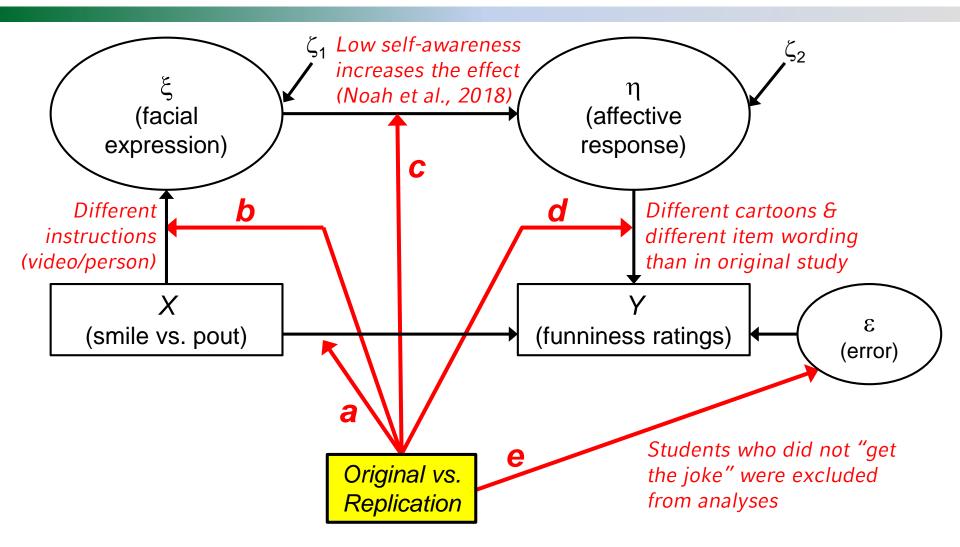

> Kaplan & Irvin (2015) https://doi.org/10.1371/ journal.pone.0132382


2. Context-Dependency Perspective

- What's the evidence?
 - Substantial heterogeneity of effect sizes across study sites in the "ManyLabs" projects
 - Evidence for contextual effects (in multilevel terms) in some well-known social psych findings (e.g., intergroup contact; Pettigrew, 2018)
 - Context-dependency predicts replicability (Van Bavel et al., 2016; but see Inbar, 2016)

(Ebersole et al., 2016)

Example: Facial Feedback Effect (Strack, Martin, & Stepper, 1988)


2. Context-Dependency Perspective

Example: Facial Feedback Effect (Strack, Martin, & Stepper, 1988)

Study	Smile	Pout		Smile-Pout [95% CI]
SMS Study 1 (Original Study)	5.14	4.32		0.82 [-0.05 , 1.69]
RRR Studies				
Albohn Allard Benning Bulnes Capaldi Chasten Holmes Koch Korb Lynott Oosterwijk Özdogru Pacheco-Unguetti Talarico Wagenmakers Wayand Zeelenberg	4.20 5.05 4.69 4.91 5.01 4.91 4.93 4.14 4.54 4.63 3.77 3.78 4.36 4.94 4.75 4.93	4.06 4.89 4.70 4.49 5.02 5.06 4.71 5.12 4.12 4.12 4.18 4.87 4.34 3.91 4.34 4.79 4.95 4.58		$\begin{array}{c} 0.14 \left[\begin{array}{c} -0.40 \\ 0.67 \end{array} \right] \\ 0.16 \left[\begin{array}{c} -0.43 \\ 0.75 \end{array} \right] \\ -0.02 \left[\begin{array}{c} -0.52 \\ 0.49 \end{array} \right] \\ 0.12 \left[\begin{array}{c} -0.43 \\ 0.67 \end{array} \right] \\ -0.11 \left[\begin{array}{c} -0.69 \\ 0.46 \end{array} \right] \\ -0.05 \left[\begin{array}{c} -0.65 \\ 0.54 \end{array} \right] \\ 0.20 \left[\begin{array}{c} -0.35 \\ 0.75 \end{array} \right] \\ -0.19 \left[\begin{array}{c} -0.73 \\ 0.35 \end{array} \right] \\ 0.02 \left[\begin{array}{c} -0.65 \\ 0.69 \end{array} \right] \\ 0.37 \left[\begin{array}{c} -0.19 \\ 0.92 \end{array} \right] \\ -0.24 \left[\begin{array}{c} -0.76 \\ 0.28 \end{array} \right] \\ -0.58 \left[\begin{array}{c} -1.41 \\ 0.26 \end{array} \right] \\ -0.58 \left[\begin{array}{c} -1.41 \\ 0.76 \\ 0.49 \end{array} \right] \\ 0.02 \left[\begin{array}{c} -0.57 \\ 0.57 \end{array} \right] \\ -0.58 \left[\begin{array}{c} -0.77 \\ 0.75 \\ 0.15 \end{array} \right] \\ -0.57 \left[\begin{array}{c} -0.77 \\ 0.57 \end{array} \right] \\ -0.20 \left[\begin{array}{c} -0.74 \\ 0.34 \end{array} \right] \\ 0.35 \left[\begin{array}{c} -0.18 \\ 0.88 \end{array} \right] \end{array}$
Meta-Analytic	Effect Siz	e:	+	0.03 [-0.11 , 0.16]
		-2.00	-1.00 0.00 1.00 2.00 Smile-Pout	(Wagenmakers et

M. Gollwitzer: Analyzing and Optimizing Replicability

al., 2016)

3. FALSE-NEGATIVE PERSPECTIVE

- Selection bias in replication projects: Effects selected for RP:P and ManyLabs had a low replication chance *a priori* (Gilbert et al., 2016)
- It is unclear what the "replicandum" should be: significance? Effect size similarity? Confidence interval? Conditional causal effect? ... (Fiedler, 2018; Wong & Steiner, 2018)
- Just "counting asterisks" (no. of significant effects) is an inappropriate estimate of replicability (Patil et al., 2016)
- Replication rates need to be compared against a proper base rate of "true" effects (Bird, 2018; Miller, 2009)
- "Failed" replications may be a regression artifact (Fiedler & Prager, 2018)
- Even more highly-powered replication projects may still not have enough power to find the assumed effect (Erdfelder & Ulrich, 2018); especially if there is publication bias...

3. FALSE-NEGATIVE PERSPECTIVE

Replication lab	Country of participants	Test language	Total tested	Total included	Smile condition M (SD)	Pout condition M (SD)
Albohn	U.S.	English	163	139	4.20 (1.30)	4.06 (1.84)
Allard	U.S.	English	167	125	5.05 (1.56)	4.89 (1.76)
Benning	U.S.	English	143	115	4.69 (1.34)	4.70 (1.43)
Bulnes	Belgium	Dutch	132	101	4.61 (1.52)	4.49 (1.29)
Capaldi	Canada	English	150	117	Originally I	reported
Chasten	U.S.	English	108	94	effect: $d \approx 0$) 19 (small
Holmes	U.S.	English	187	99	4.91 (1.49)	4.71 (1.31)
Koch	U.S.	English	116	100	For α =.05,	1-β ≕.80
Korb	Italy	Italian	116	101	⇔Optimal /	N=688 per
Lynott	United Kingdom	English	158	126	4.54 (1.42)	4.18 (1.73)
Dosterwijk	The Netherlands	Dutch	150	110	study (1.48)	4.87 (1.32)
Özdoğru	Turkey	Turkish	157	87	3.77 (1.95)	4.34 (1.94)
Pacheco-Unguetti	Spain	Spanish	150	120	3.78 (1.65)	3.91 (1.84)
Falarico	U.S.	English	160	112	4.36 (1.30)	4.34 (1.60)
Wagenmakers	The Netherlands	Dutch	181	130	4.94 (1.14)	4.79 (1.30)
Wayand	U.S.	English	150	110	4.75 (1.39)	4.95 (1.49)
Zeelenberg	The Netherlands	Dutch	145	108	4.93 (1.40)	4.58 (1.41)

Table 1. Descriptive Results and General Information for Each of the 17 Participating Labs

(Wagenmakers et al., 2016)

SUMMARY

- We are just beginning to understand when and why so many empirical effects are (non)replicable.
- It is unclear to what extent non-replicability is due to (1) high false-positive rates in the literature, (2) context dependency, and/or (3) false negatives in replication studies.
- The phenomenon of (non)replicability should be treated with as much scientific rigor as possible ("replication science").
- Open Science may be a cure, but only if the "false positive" diagnosis was correct. But: Open Science is laudable *per se*!
- Context dependency is a concept that requires more theoretical and empirical elaboration. It should never be used to immunize an effect a posteriori (Meehl, 1990).

SPP 2317 "META-REP"

DFG-Schwerpunktprogramm ("Priority Program") "META-REP: A Meta-scientific Program to Analyze and Optimize Replicability in the Behavioral, Social, and Cognitive Sciences"

https://leibniz-psychology.org/metarep

SPP 2317 "META-REP"

- meta ______ _____rep
- Collaborative project platform (20-30 individual projects)
- Duration: 2 × 3 years (2021-2024 and 2024-2027)
- Overarching aim: To empirically investigate ...
 - 1. WHAT "replicability" means (and when a replication can be regarded as successful vs. failed) in different behavioral, social, and cognitive sciences,
 - 2. WHY replication rates are (sometimes) lower than expected; i.e., which factors predict/explain the replicability of effects in different behavioral, social, and cognitive sciences (e.g., QRPs, contextual influences, etc.)
 - **3.** HOW an acceptable level of replicability can be achieved and maintained in different behavioral, social, and cognitive sciences.

DATA MANAGEMENT Recommendations

Deutsche Gesellschaft für Psychologie

• originally issues 2016; now revised (2020):

https://psyarxiv.com/hcxtm/ (German)

https://psyarxiv.com/24ncs/ (English)

- Topics covered in the text:
 - Definitions ("raw data," "primary data," "secondary data");
 - Legal aspects (e.g., data protection, copyright, licenses);
 - Requirements for eligible repositories;
 - Two types of data sharing (data sharing to reproduce published findings; data sharing in the context of funded research projects);
 - Access restrictions ("open data," "conditional access," "restricted access," "secure data") and scientific use files;
 - Structural challenges and incentives; conflicts of interests; disputes

OPEN SCIENCE DAY, MANNHEIM, 20.10.2020

THANK YOU!

